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Abstract

Solving inverse problems is computationally expensive,
if not infeasible, under specific scenarios. For example,
many forward solutions are required when solving inverse
problems using Bayesian techniques. In this work, a novel
inference protocol is established, that can be used to infer
the cardiac bidomain conductivities and the cardiac fibre
rotation angle (bidomain parameters). This protocol uses
a surrogate model, developed using generalised polyno-
mial chaos techniques, to approximate cardiac potentials
on a multi-electrode array. The resulting surrogate model
is used in conjunction with Bayesian inference techniques
to infer the bidomain parameters. A lower-order surrogate
model (order three) can effectively characterise the influ-
ence of the extracellular conductivities and fibre rotation
on the cardiac potentials; however, it is recommended that
a higher-order surrogate model expansion of order seven
be used to adequately characterise the influence of the in-
tracellular conductivities as well. This seventh order sur-
rogate model was successfully used to infer the extracellu-
lar conductivities and fibre rotation angle from a single set
of synthetically generated noisy experimental potentials,
while the intracellular conductivities were unable to be re-
trieved accurately under this scenario.

1. Introduction

Electrophysiological simulations of cardiac tissue can
be a valuable tool to help facilitate a more thorough under-
standing of illnesses of the heart. Such simulations can be
achieved by using the bidomain equations, which govern
the electrical potential in the intracellular i and extracel-
lular e spaces of cardiac tissue, under the assumption that
they are spatially coincident continua.

Heart tissue, unique in structure compared to other mus-
cle tissue [1], is arranged in laminar sheets of fibres and
stacked such that the orientation of each sheet is slightly
offset to the sheet below to form the walls of the heart,
thus introducing the notion of fibre rotation. The electri-
cal conduction in the three orthogonal directions - along

and across the direction of the fibres (longitudinal l and
transverse t directions, respectively) and normal n to the
sheets of the fibres - is different [2]. Given there are two in-
terpenetrating domains, a total of six cardiac conductivity
values are required to describe the distribution of potential
through cardiac tissue [3]: the intracellular conductivities,
gil, git, gin, abbreviated as gi’s, and the extracellular con-
ductivities, gel, get and gen, abbreviated as ge’s. These six
cardiac conductivity values and the fibre rotation angle α
(the bidomain parameters) are critical for accurate electro-
physiological simulations of cardiac tissue through the use
of the bidomain model.

Difficulties associated with obtaining and utilising ex-
perimental measurements [3] have made it challenging
to accurately obtain values for the bidomain parameters.
This study develops a novel protocol, based on a Bayesian
framework and polynomial chaos techniques, which al-
lows for the creation of a surrogate model that approx-
imates solutions to the bidomain model. This surrogate
model is used to retrieve the bidomain parameters from
experimental potentials measured on a multi-electrode ar-
ray inserted into cardiac tissue. This protocol is validated
through the use of simulated experimental measurements.

2. Methods

2.1. Governing Equations

In this model, we assume that the ventricular muscle is
represented by a slab of cardiac tissue extending 2 cm in
the x and y directions and 1 cm in the z direction, which
is in contact with a pool of blood whose thickness extends
to infinity. It is assumed that the l, t and n directions are
aligned along the x, y and z axes, respectively, on the epi-
cardium [3].

The electric potentials, within the cardiac tissue, are
governed by the steady-state bidomain equations [2],

∇·M i∇ϕi =
β

R
(ϕi−ϕe), ∇·M e∇ϕe = − β

R
(ϕi−ϕe)−Ic ,

(1)
where ϕq is the potential (q = i, e), R is the resistance of
the cell membrane, β is the ratio of surface cell area to cell
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Figure 1. Schematic of the NeuroNexus128-electrode ar-
ray. The current source and sink electrodes, labelled Sr and
Sn, respectively, are coloured red.

volume, and Ic is the sub-threshold current applied in the
extracellular space to produce a potential. M q is a con-
ductivity tensor that accounts for the anisotropy of cardiac
tissue and contains the bidomain parameters including the
fibre rotation angle α. Laplace’s equation governs poten-
tial in the blood. A description of the solution technique is
given in a previous paper by Johnston and Johnston [3].

The following parameters were used to solve the model:
β = 2000cm−1, R = 9100 Ωcm2, Ic = 1 µAcm−3, with
the conductivity of the blood assumed to be 6.7 mS/cm.
These parameters are consistent with values used for elec-
trophysiological simulations from the literature [3, 4]. The
nominal values used for the bidomain parameters are gil =
2.40, git = 0.24, gin = 0.10, gel = 2.40, get = 1.60,
gen = 1.00, α = 120◦ where the conductivities are in
mS/cm [3].

2.2. Electrode Array and Generating Syn-
thetic Potentials

A NeuroNexus Matrix Array (NeuroNexus, Ann Arbor,
MI, USA) consisting of 128 electrodes (Figure 1) is used
as the basis for this study. Two electrodes are used for the
current application, while the remainder for measuring the
resulting extracellular potentials.

Noise samples from a Gaussian distribution with a mean
of zero and a specified standard deviation are added to the
nominal synthetic potentials calculated on each measuring
electrode via the bidomain model. The resulting set of po-
tentials is labelled a measurement set and is equivalent to
a single set of experimental measurements, given a pair of
current injection electrodes.

2.3. Inference Protocol

Bayes’ theorem is employed to infer the probability
distributions of the seven bidomain parameters θθθ (poste-
rior), given data D, the forward model and prior knowl-
edge about θθθ [5]. Markov Chain Monte Carlo algorithms

(NUTS and Slice Samplers) are used to approximate the
posterior distributions through the PYMC3 package [6].

2.3.1. The Likelihood Function

The likelihood function is constructed by first assuming
the measurement error is given by [7],

Dw = fw(θθθ) + ϵw, (2)

where Dw is the experimental data at the wth measuring
electrode, fw(θθθ) is the forward model potential at the wth
measuring electrode, and ϵw is a normally distributed ran-
dom variable that accounts for measurement noise intro-
duced to the wth measuring electrode. The joint likelihood
of the measurement set is the product of the individual ob-
servation likelihoods [8], that is,

P (D|θθθ, σ2) =

W∏
w=1

1√
2πσ2

exp

(
− (Dw − fw(θθθ))

2

2σ2

)
(3)

where W is the number of measuring electrodes, and σ2

quantifies the experimental uncertainties of all forms. No
prior experimental information exists regarding σ2, and so
it will be treated as a nuisance parameter and inferred dur-
ing parameter estimation.

2.4. Introduction of a Surrogate Model

Given the computational costs of solving the bidomain
model, it is often infeasible to infer the bidomain param-
eters through the Bayesian framework. However, a gener-
alised polynomial chaos (gPC) expansion [9] can approx-
imate the cardiac potentials at each measuring electrode,
given θθθ. Simulations of the forward model can then be
replaced by evaluations of the gPC expansion, which is
computationally inexpensive.

The following gPC expansion is constructed using the
forward model realisations obtained using Np samples
from the parameter space [9],

f̂N,w(θθθ) =

Np−1∑
η=0

cηψη(Z), (4)

where N is the polynomial order, f̂N,w is the approxima-
tion of the cardiac potential at the wth measuring electrode
given θθθ and Np is the truncation term dependent on N and
the number of model parameters. The polynomial expan-
sion is constructed using Legendre polynomials (ψη) since
the samples are uniformly distributed. The polynomial co-
efficients (cη) are evaluated using regression techniques
[9].

In this work, the gPC expansion is constructed to ap-
proximate the potentials using bidomain parameters in the
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domain [0.5M0, 1.5M0], where M0 is the nominal value
of the bidomain parameter. It is assumed that the prior dis-
tribution of each bidomain parameter in θθθ is uniformly dis-
tributed from [0.5M0, 1.5M0]. The prior for σ is assumed
to be given by a half-normal distribution, given that σ is
continuous and strictly positive.

3. Results and Discussion

3.1. Identifying the Errors of the Surrogate
Model

In this study, we attempt to identify any errors in the re-
trieved bidomain parameters that arise due to the introduc-
tion of the surrogate model. This can be achieved by in-
ferring θθθ, using the surrogate model, from a nominal mea-
surement set of potentials with no added noise. Note that
nominal potentials are generated using the bidomain model
at the location of the measuring electrodes and using the
source-sink electrode given in Figure 1.

Firstly, an expansion of order three, with Np = 130, is
used to develop the surrogate model (low-fidelity model
[9]). This surrogate model has an L2 relative error norm of
0.840% when compared against 801 truth datasets. In ad-
dition, an expansion of order seven is also used to develop
the surrogate model (mid-fidelity model), withNp = 3442
[9]. The mid-fidelity surrogate model has an L2 relative
error norm of 0.020% when compared against 801 truth
datasets. A sample takes approximately 0.4 seconds to be
computed; however, once the surrogate has been created,
the computational cost of evaluating the mid-fidelity model
is comparable to that of the low-fidelity model.

When combined with the inference protocol, the low-
fidelity model can retrieve the ge’s and α accurately. The
means of the posterior distributions of these parameters
have relative errors of approximately 0.3%. The 99% high-
est density interval (HDI), that is, the interval in which the
retrieved parameter falls with probability 0.99 and which
describes the uncertainty in the retrieved value, has bounds
that are approximately ±0.2% of the mean value for the
ge’s and ±1% of the mean value for α.

The relative errors of the mean values of the retrieved
gi posterior distributions were 1.37%, 3.45% and 5.32%
for gil, git and gin, respectively, with 99% HDI bounds of
±0.2%, ±7.7% and ±5.6%, respectively.

Under the mid-fidelity model, the means of the retrieved
gi posterior distributions have a relative error of approxi-
mately 3.1 × 10−3%, with bounds of the 99% HDI being
±0.03% of the mean. The ge distributions have a rela-
tive error of approximately 2.0 × 10−3%, and the 99%
HDI bounds are ±1.2 × 10−3% of the mean value. Fi-
nally, the mean for the distribution of α has a relative er-
ror of 9.3 × 10−3% and has 99% HDI bounds that are

±8.1× 10−3% of the mean value.
These results show that the low-fidelity forward surro-

gate model can accurately characterise ge’s and α, but
is unable to adequately characterise the influence of gi’s,
even given the low L2 error of the approximation. Con-
sequently, the gi’s were retrieved with higher errors when
using the low-fidelity model. The mid-fidelity forward sur-
rogate model can accurately characterise the influence of
all the bidomain parameters on the cardiac potentials, and
thus the bidomain parameters are able to be retrieved accu-
rately. Given the reduced computational costs of develop-
ing the low-fidelity surrogate, it is recommended that the
low-fidelity surrogate be used to refine the inference algo-
rithm parameters, and the mid-fidelity surrogate model be
used for parameter inference.

3.2. Introducing Simulated Experimental
Noise

Synthetic experimental potentials are generated by in-
troducing noise to a set of simulated nominal potentials.
Noise samples are obtained from a normal distribution of
mean 0 volts and a standard deviation of 1.5× 10−5 volts
(approximately 5% of the root mean square of the nomi-
nal potentials). A mid-fidelity surrogate model is used to
infer θθθ given the synthetically generated measurement set.
Figure 2 presents the inference results.

Figure 2 suggests that convergence has been achieved
for the ge’s and α. The relative error of the mean of
the posterior distributions for the ge’s is approximately
1%, while the bounds of the 99% HDI are approximately
±3.7% of the mean value. Similarly, the mean of the dis-
tribution of α has a relative error of 5%, while the bounds
of the 99% HDI are approximately ±25% of the mean.
The gi’s are not adequately inferred, and the 99% HDI
almost spans the domain of the gPC model. However, it
should be noted that this protocol provides more desirable
results than current frequentist approaches that are used to
retrieve the bidomain parameters given a single set of syn-
thetic measurements of similar noise levels [3].

Validation of the inference (posterior predictive check)
can be achieved by generating replicated datasets, obtained
using the forward model and samples of the bidomain pa-
rameters drawn from the inference, and comparing it with
the observed data (the measurement set). The results of
posterior predictive checks suggest that the inferred pa-
rameters are able to replicate the observed data very well,
despite the high levels of uncertainty associated with the
gi’s and the errors associated with the ge’s and α.

4. Conclusion

This study developed a novel protocol to retrieve the
bidomain parameters through the use of a surrogate model
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Figure 2. Posterior distributions, mean and the 99% HDI
of the retrieved bidomain parameters. The vertical line in-
dicates the nominal value of the parameter. The inequal-
ities indicate the probability of the retrieved value either
being greater or lesser than the nominal value. Values for
the conductivities are in S/cm.

and Bayesian inference techniques. A lower-order surro-
gate model of order three can be used to accurately charac-
terise the influence of the extracellular conductivities and
fibre rotation on the solution; however, a higher-order ex-
pansion of order seven is required to accurately charac-
terise the influence of the intracellular conductivities as
well.

Using this order seven protocol to infer the bidomain
parameters from a simulated noisy dataset suggests that
extracellular conductivities and fibre rotation angle can
be inferred to an acceptable degree of accuracy; how-
ever, the intracellular conductivities were unable to be in-
ferred. We hypothesise that the use of multiple datasets,
obtained through different source-sink electrode configu-
rations, may allow for the accurate retrieval of intracellular
conductivities, as well as allow for extracellular conductiv-

ities and fibre rotation angle to be further refined. Future
studies will further develop this protocol to include data
from multiple datasets and tailor the likelihood such that
the presence of outliers does not unduly influence the re-
sults of the inference.
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